Wavefront cache-friendly algorithm for compact numerical schemes

نویسنده

  • Alex Povitsky
چکیده

Compact numerical schemes provide high-order solution of PDEs with low dissipation and dispersion. Computer implementation of these schemes requires numerous passes of data through cache memory that considerably reduces performance of these schemes. To reduce this di culty, a novel algorithm is proposed here. This algorithm is based on a wavefront approach and sweeps through cache only twice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cache-oblivious wavefront algorithms for dynamic programming problems: efficient scheduling with optimal cache performance and high parallelism

Wavefront algorithms are algorithms on grids where execution proceeds in a wavefront manner from the start to the end of the execution (execution moves through the grid as if a wavefront is moving). Many dynamic programming problems and stencil computations are wavefront algorithms. Iterative wavefront algorithms for evaluating dynamic programming (DP) recurrences exploit optimal parallelism, b...

متن کامل

3D Eikonal Solvers, Part II: Anisotropic Traveltimes

In anisotropic media the direction of energy propagation is not in general tangent to the wavefront normal. On the other hand, nite di erence eikonal solvers compute the solution based on the traveltime gradient and the wavefront normal. Local convexity of the wavefronts in transverse isotropic (TI) media is studied for the eikonal solver to determine the correct upwind direction of the energy ...

متن کامل

Towards energy efficiency and maximum computational intensity for stencil algorithms using wavefront diamond temporal blocking

We study the impact of tunable parameters on computational intensity (i.e., inverse code balance) and energy consumption of multicore-optimized wavefront diamond temporal blocking (MWD) applied to different stencil-based update schemes. MWD combines the concepts of diamond tiling and multicore-aware wavefront blocking in order to achieve lower cache size requirements than standard singlecore wa...

متن کامل

High Order Compact Finite Difference Schemes for Solving Bratu-Type Equations

In the present study, high order compact finite difference methods is used to solve one-dimensional Bratu-type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical order of the method is consistent with its numerical rate of convergence. The maximum absolute errors in the solution at grid points are calculated and it is shown that the ...

متن کامل

Multicore-optimized wavefront diamond blocking for optimizing stencil updates

The importance of stencil-based algorithms in computational science has focused attention on optimized parallel implementations for multilevel cache-based processors. Temporal blocking schemes leverage the large bandwidth and low latency of caches to accelerate stencil updates and approach theoretical peak performance. A key ingredient is the reduction of data traffic across slow data paths, es...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2001